机器学习(ML)是指根据大量数据预测有意义的输出或对复杂系统进行分类的计算机算法。 ML应用于各个领域,包括自然科学,工程,太空探索甚至游戏开发。本文的重点是在化学和生物海洋学领域使用机器学习。在预测全球固定氮水平,部分二氧化碳压力和其他化学特性时,ML的应用是一种有前途的工具。机器学习还用于生物海洋学领域,可从各种图像(即显微镜,流车和视频记录器),光谱仪和其他信号处理技术中检测浮游形式。此外,ML使用其声学成功地对哺乳动物进行了分类,在特定的环境中检测到濒临灭绝的哺乳动物和鱼类。最重要的是,使用环境数据,ML被证明是预测缺氧条件和有害藻华事件的有效方法,这是对环境监测的重要测量。此外,机器学习被用来为各种物种构建许多对其他研究人员有用的数据库,而创建新算法将帮助海洋研究界更好地理解海洋的化学和生物学。
translated by 谷歌翻译
A comprehensive pharmaceutical recommendation system was designed based on the patients and drugs features extracted from Drugs.com and Druglib.com. First, data from these databases were combined, and a dataset of patients and drug information was built. Secondly, the patients and drugs were clustered, and then the recommendation was performed using different ratings provided by patients, and importantly by the knowledge obtained from patients and drug specifications, and considering drug interactions. To the best of our knowledge, we are the first group to consider patients conditions and history in the proposed approach for selecting a specific medicine appropriate for that particular user. Our approach applies artificial intelligence (AI) models for the implementation. Sentiment analysis using natural language processing approaches is employed in pre-processing along with neural network-based methods and recommender system algorithms for modeling the system. In our work, patients conditions and drugs features are used for making two models based on matrix factorization. Then we used drug interaction to filter drugs with severe or mild interactions with other drugs. We developed a deep learning model for recommending drugs by using data from 2304 patients as a training set, and then we used data from 660 patients as our validation set. After that, we used knowledge from critical information about drugs and combined the outcome of the model into a knowledge-based system with the rules obtained from constraints on taking medicine.
translated by 谷歌翻译
How can we accurately identify new memory workloads while classifying known memory workloads? Verifying DRAM (Dynamic Random Access Memory) using various workloads is an important task to guarantee the quality of DRAM. A crucial component in the process is open-set recognition which aims to detect new workloads not seen in the training phase. Despite its importance, however, existing open-set recognition methods are unsatisfactory in terms of accuracy since they fail to exploit the characteristics of workload sequences. In this paper, we propose Acorn, an accurate open-set recognition method capturing the characteristics of workload sequences. Acorn extracts two types of feature vectors to capture sequential patterns and spatial locality patterns in memory access. Acorn then uses the feature vectors to accurately classify a subsequence into one of the known classes or identify it as the unknown class. Experiments show that Acorn achieves state-of-the-art accuracy, giving up to 37% points higher unknown class detection accuracy while achieving comparable known class classification accuracy than existing methods.
translated by 谷歌翻译
Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
translated by 谷歌翻译
Supervised machine learning-based medical image computing applications necessitate expert label curation, while unlabelled image data might be relatively abundant. Active learning methods aim to prioritise a subset of available image data for expert annotation, for label-efficient model training. We develop a controller neural network that measures priority of images in a sequence of batches, as in batch-mode active learning, for multi-class segmentation tasks. The controller is optimised by rewarding positive task-specific performance gain, within a Markov decision process (MDP) environment that also optimises the task predictor. In this work, the task predictor is a segmentation network. A meta-reinforcement learning algorithm is proposed with multiple MDPs, such that the pre-trained controller can be adapted to a new MDP that contains data from different institutes and/or requires segmentation of different organs or structures within the abdomen. We present experimental results using multiple CT datasets from more than one thousand patients, with segmentation tasks of nine different abdominal organs, to demonstrate the efficacy of the learnt prioritisation controller function and its cross-institute and cross-organ adaptability. We show that the proposed adaptable prioritisation metric yields converging segmentation accuracy for the novel class of kidney, unseen in training, using between approximately 40\% to 60\% of labels otherwise required with other heuristic or random prioritisation metrics. For clinical datasets of limited size, the proposed adaptable prioritisation offers a performance improvement of 22.6\% and 10.2\% in Dice score, for tasks of kidney and liver vessel segmentation, respectively, compared to random prioritisation and alternative active sampling strategies.
translated by 谷歌翻译
The primary obstacle to developing technologies for low-resource languages is the lack of representative, usable data. In this paper, we report the deployment of technology-driven data collection methods for creating a corpus of more than 60,000 translations from Hindi to Gondi, a low-resource vulnerable language spoken by around 2.3 million tribal people in south and central India. During this process, we help expand information access in Gondi across 2 different dimensions (a) The creation of linguistic resources that can be used by the community, such as a dictionary, children's stories, Gondi translations from multiple sources and an Interactive Voice Response (IVR) based mass awareness platform; (b) Enabling its use in the digital domain by developing a Hindi-Gondi machine translation model, which is compressed by nearly 4 times to enable it's edge deployment on low-resource edge devices and in areas of little to no internet connectivity. We also present preliminary evaluations of utilizing the developed machine translation model to provide assistance to volunteers who are involved in collecting more data for the target language. Through these interventions, we not only created a refined and evaluated corpus of 26,240 Hindi-Gondi translations that was used for building the translation model but also engaged nearly 850 community members who can help take Gondi onto the internet.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
远程患者监测(RPM)系统的最新进展可以识别各种人类活动,以测量生命体征,包括浅表血管的细微运动。通过解决已知的局限性和挑战(例如预测和分类生命体征和身体运动),将人工智能(AI)应用于该领域的医疗保健领域越来越兴趣,这些局限性和挑战被认为是至关重要的任务。联合学习是一种相对较新的AI技术,旨在通过分散传统的机器学习建模来增强数据隐私。但是,传统的联合学习需要在本地客户和全球服务器上培训相同的建筑模型。由于缺乏本地模型异质性,这限制了全球模型体系结构。为了克服这一点,在本研究中提出了一个新颖的联邦学习体系结构Fedstack,该体系支持结合异构建筑客户端模型。这项工作提供了一个受保护的隐私系统,用于以分散的方法住院的住院患者,并确定最佳传感器位置。提出的体系结构被应用于从10个不同主题的移动健康传感器基准数据集中,以对12个常规活动进行分类。对单个主题数据培训了三个AI模型ANN,CNN和BISTM。联合学习体系结构应用于这些模型,以建立能够表演状态表演的本地和全球模型。本地CNN模型在每个主题数据上都优于ANN和BI-LSTM模型。与同质堆叠相比,我们提出的工作表明,当地模型的异质堆叠表现出更好的性能。这项工作为建立增强的RPM系统奠定了基础,该系统纳入了客户隐私,以帮助对急性心理健康设施中患者进行临床观察,并最终有助于防止意外死亡。
translated by 谷歌翻译
深神经网络(DNN)通常被设计为依次级联的可区分块/层,其预测模块仅连接到其最后一层。 DNN可以与沿主链的多个点的预测模块相连,其中推理可以在中间阶段停止而无需通过所有模块。最后一个退出点可能会提供更好的预测错误,但还涉及更多的计算资源和延迟。就预测误差和成本而言,一个“最佳”的出口是可取的。最佳出口点可能取决于任务的潜在分布,并且可能会从一个任务类型变为另一种任务类型。在神经推断期间,实例的基础真理可能无法获得,并且每个出口点的错误率无法估算。因此,人们面临在无监督环境中选择最佳出口的问题。先前的工作在离线监督设置中解决了此问题,假设可以使用足够的标记数据来估计每个出口点的错误率并调整参数以提高准确性。但是,经过预训练的DNN通常被部署在新领域中,可能无法提供大量的地面真相。我们将退出选择的问题建模为无监督的在线学习问题,并使用匪徒理论来识别最佳出口点。具体而言,我们专注于弹性BERT,这是一种预先训练的多EXIT DNN,以证明它“几乎”满足了强大的优势(SD)属性,从而可以在不知道地面真相标签的情况下学习在线设置中的最佳出口。我们开发了名为UEE-UCB的基于上限(UCB)的上限(UCB)算法,该算法可证明在SD属性下实现了子线性后悔。因此,我们的方法提供了一种自适应学习多种exit DNN中特定于域特异性的最佳出口点的方法。我们从IMDB和Yelp数据集上进行了验证算法验证我们的算法。
translated by 谷歌翻译
元学习是机器学习的一个分支,旨在将相关任务分布的数据合成以有效地解决新的数据。在过程控制中,许多系统具有相似且充分理解的动力学,这表明可以通过元学习创建可推广的控制器是可行的。在这项工作中,我们制定了一种元加强学习(META-RL)控制策略,该策略利用已知的离线信息进行培训,例如模型结构。对模型参数的分布而不是单个模型,对元RL代理进行了训练,从而使代理能够自动适应过程动力学的变化,同时保持性能。一个关键的设计元素是能够在培训期间离线利用基于模型的信息,同时保持与新环境交互的无模型策略结构。我们以前的工作已经证明了如何将这种方法应用于调整比例综合控制器以控制一阶过程的与工业相关的问题。在这项工作中,我们简要地重新引入了我们的方法,并证明了如何将其扩展到比例综合衍生的控制器和二阶系统。
translated by 谷歌翻译